The Beauty of the Brain, Part 2

Part 2: Brain Research from Memory to Meditation

In the National Geographic article, “Beyond the Brain,” James Shreeve describes scientific research on amazing brain functions conducted by well-known scientists. If you missed it, peruse Part 1: Cognitive Functions and Corina’s Language Abilities.

Memory Training

28-year-old Glen McNeil wants to earn his green badge and become a licensed taxi driver in London. In order to do this, he has to pass three sets of examinations that will test his knowledge of London streets and surrounding towns. Meanwhile, McNeilI’s hippocampus has to do extra work. The hippocampus is a critical part of the brain that supports the functions of memory and learning, along with the processing of spatial relationships in the environment.

An MRI study published in 2000 by scientists at University College of London, stated that in London taxi drivers the hippocampus was enlarged compared in the rear portion of the brain. This concludes that fact that the adult human brain cannot grow. While, on average, the front portion of the hippocampus is observed to be smaller in taxi drivers, suggesting that neighboring regions of the brain have to help build a very detailed map of where one needs to go.

On the contrary, in 1998 Fred H. Gage of the SaIk Institute in La JoIIa, California, presented that new cells can grow in the adult human hippocampus. Gage believes that stem cells exist everywhere in the brain as well. Stem cells are capable of developing into functioning new neurons that could provide hope for the treatment of Alzheimer's disease, Parkinson's disease, and a host of other degenerative brain disorders in future all due to nerve regeneration.

Universal Emotional Expressions

Forty years ago, psychologist Paul Ekman of the University of California, San Francisco, showed isolated Fore people in New Guinea photographs of Americans expressing various emotions. The Fore people recognized expressions of anger, happiness, sadness, disgust, fear, and surprise even though they had never been exposed to Western faces.

Ekman conducted the experiment again but in reverse. She showed Fore faces to Westerners this time. She observed that the emotions were again unmistakable. Ekman's study supported the notion that “the facial expressions of basic emotions are universal, an idea first put forth by Charles Darwin.” According to Ekman, by consciously being aware of the time spent on one emotion and what triggers it, we can manage our emotions better.

iStock-1023692050.jpg

Fear from Nature vs Nurture

It was seen in natural selection that those who retreated from threats survived, while individuals who questioned and were curious about the “threat” did not live as long to pass on their genes.

In the 1980s a series of studies at the University of Wisconsin-Madison tested whether or not fear is in our nature or a product of our nurture. In detail, they compared the reaction (fear level) of lab-raised monkeys with monkeys born in the wild to test if one was more afraid of a snake now that one watched the other be scared of it. As a result, lab-raised monkeys, with no previous fear of snakes, began to show fear after watching wild-born monkeys show fear. However the idea that one monkey will be scared of the same thing if they see the other monkey react, does not apply to every object or living organism. In detail, when lab-raised monkeys watched wild-born monkeys be afraid of flowers, lab-raised monkeys did not react the same.

In more recent research, scientists have found that the amygdala is where in the brain's emotional system fear is activated. Shreeve noted that “it seems likely that there is indeed, etched into the primate brain, a predisposition to dread natural phenomena that can hurt us, but no predisposition to learn to fear something that will not.” However, the predisposition requires a social experience, such as the two types of monkeys seeing one be scared of a snake, to be activated.

Neuroatypical

Fifteen-year-old Tito Mukhopadhyay has low-functioning autism where it is very difficult for him control his own behavior and difficulties with communication. However, despite the chaos and disconnect in controlling his body and mind, Mukhopadhyay wrote his own autobiography and demonstrated cognitive functioning and understanding. He described himself as two separate selves; one cognitive self, which he has control over to learn and grow, and the behavioral self that he has not been able to manage.

Michael Merzenich, a neuroscientist at the University of California, San Francisco noted that genes do play a role in such a diagnosis. Even one-year old infants who are eventually diagnosed with autism later tend to have an atypical brain growth spurt, which may be partially due to nerve impulse cells that overproduce in brain's white matter.” Other regions of the brain related to reading social cues and interacting with people tend to be less active. However, such a diagnosis is complicated and there is not just one identifiable cause.

Musicality

Those who have “absolute or perfect pitch,” “speaking words and repeating them days later at the same pitch,” can identify the sound of an E flat or G sharp as easy as anyone who can see that grass is green or the ocean is blue.

Investigators at the University of California, San Diego, suggests that the phenomenon may not be as unusual as one may think. Those who study music and those who speak tonal languages are more likely to have absolute pitch. A study found that only 7 percent of non-Asian freshmen at Eastman School of Music had perfect pitch, however more than half (63 percent) of Asian freshman at the Central Conservatory of Music had perfect pitch.

A genetic predisposition for “absolute pitch” is observed to be more common among cultures who have a tonal language, however this ability is also found to be more common in those cultures who value music and early musical training.

Object Permanence and Facial Recognition

At the Centre for Brain and Cognitive Development at Birkbeck, University of London, researcher Jordy Kaufman develops a “Babylab” that helps to understand what is going on in a baby's mind. Kaufman uses electrode caps on six-month-olds to view and record brain waves, or electrical activity in their brains. The infants then view a cartoon version of a train driving into a tunnel.

The goal is to test an infant’s sense of object permanence by observing the activity in a babies' right temporal lobes when an object in a video is suddenly hidden from view. Object permanence is the ability to understand that the object still exists even if it’s not physically seen. When the train disappears into the tunnel, a burst of activity in the babies' right temporal lobes is observed, demonstrating that the infants are actually trying to maintain the visual representation of the train even though it was shown to disappear into the tunnel.

Similarly, Babylab's Hanife Halit demonstrates that most infants have a predisposition to focus on and recognize faces in the first year of life. While neurotypical babies prefer faces, originally monkey and human faces, that are facing them, children with Autism may not have this genetic predisposition. Halit conjectures that without consistent interaction with people and their given emotions, a baby’s brain might fail to stay engaged with new social interactions.

iStock-896358708.jpg

Somatosensory Cortex vs Visual Cortex

In 1996 Pascual-Leone, a professor of neurology at Harvard University and Boston's Beth Israel hospital, and his colleagues at the National Institutes of Health performed a study that demonstrated that blind adults who were learning how to read Braille were using information gained from their fingers while reading Braille lights up the visual cortex of the brain as well as the somatosensory cortex. This means that not only are they feeling the raised Braille, but they are also visualizing what they’re reading as well.

Pascual-Leone’s research was to blindfold individuals and after a couple of days, the individual’s sense of touch and hearing were enhanced due bursts of activity in their visual cortex. Once the blindfold was off, activity returned to normal information gained from the eyes.  Although this time length was too short for new nerve connections, the research suggests that the true purpose of the visual cortex is to identify spatial relationships.

Creativity

On any given morning Alice Flaherty, a neurologist at Massachusetts General Hospital in Boston,” writes whenever she can, wherever she can.

Flaherty developed a case of hypergraphia, which is the compulsive and dire need to write. The need to write would come at any given moment, whether it be at 4 o’clock in the morning or at 6 o’clock at night, it was always there.

Flaherty ended up writing a book on her own condition because it interested her so much. She determined that her biggest flare-ups or episodes were those caused by large hormonal changes with childbirth, which is also a common trigger for depression, mania and other mood disorders. This condition is commonly associated with temporal lobe epilepsy, resulting in abnormal sensations and possible hallucinations.

Hypergraphia may offer important information to the idea of creativity in the brain. The frontal lobes provide judgment and flexibility of thought, however the temporal lobes and limbic system supply drive and motivation. This drive and motivation may provide more creativity than the frontal lobe as Flaherty suggests that the drive and motivation are more important than the critical thinking.

Meditation

Western neuroscientists have taken an interest in new evidence for the brain's plasticity, regarding Buddhist training and their techniques to steer their emotions into more compassionate and positive feelings rather than negative.

Richard Davidson and his colleagues at the University of Wisconsin-Madison have been studying brain activity in Tibetan monks, both in meditative and non-meditative states. He noticed that those who had negative emotions displayed activity in their right prefrontal cortex, while those who had more positive feelings had activity in the left prefrontal cortex.

Davidson tested this theory on volunteers from a high-tech company where one group of volunteers received eight weeks of training in meditation, while a control group did not. Both groups received a flu shot as part of the study.

At the conclusion of Davidson’s study, there was significant brain activity towards the left prefrontal cortex in those who were meditating, illustrating an increase in positive emotions. Regarding the flu shot, the group who was meditating also had a healthier immune response from the flu shot, demonstrating that the meditation not only created effects with their brain functioning and positive emotions, but also produced positive physiological effects.

For more information on brain development, emotion, and neurofeedback brain training, please contact us or visit our website.

-Written by Lily Schmitt and Tanya L. Hilber, PsyD

To review the first Beauty of the Brain blog post, read Part 1: Cognitive Functions and Corina’s Language Abilities.

References

Shreeve, James. “Beyond the Brain.” Science and Innovation. National Geographic Magazine. Web. https://www.nationalgeographic.com/science/health-and-human-body/human-body/mind-brain/


The Beauty of the Brain, Part 1

Part 1: Cognitive Functions & Corina’s Language Abilities

In the National Geographic article, “Beyond the Brain,” James Shreeve depicts a young patient’s journey through a life changing operation that will physically change the way one sees themselves.

Thomas Willis, known as the father of neurology, was the first to discover that the brain is the locus of the mind because of its multiple cognitive functions. These cognitive functions occur in specific locations. For example, where one remembers a sequence of their best friend’s telephone number is not in the same location in the brain, as where one recalls their familiar face.

Shreeve notes that “in the past few years, however, powerful new techniques for visualizing the sources of thought, emotion, and behavior are revolutionizing the way we understand the nature of the brain and the mind it creates.” For example, 28-year-old Corina Amarillo had a brain surgery that was going to test specific language abilities as the doctors at the UCLA medical center removed a brain tumor. As a bilingual, the neural territories may overlap because she was taught to speak both English and Spanish at a young age. Throughout surgery, she was asked to identify an object on a picture card as the doctor touched her brain with an electrode. As this happened she would answer some of the questions in English while others in Spanish. The two surgeons in the UCLA operating room said that “when Corina makes a mistake or struggles to identify a picture of some simple object, the doctors know they have hit upon a critical area, and they label the spot with a square of sterile paper, like a tiny Post-it note.”

iStock-1044908342.jpg

In the 1950s American neurosurgeon Wilder Penfield used an electrode to stimulate certain spots on the brains of epilepsy patients while they were awake during operations instead of relying on damaged brains to illustrate the origins of normal cognitive function. By labeling the critical area in the brain, doctors can use an electrode to denote where the main problem is on the brain. Having the patient awake on the operating table helps the doctors understand what they need to do in order for the patient’s linguistic skills to be smooth and understandable.

As a child, Corina comprehended and learned more information than any other at her age through her senses. Because so many neurons were stimulating in her brain, Corina's cognitive functions were less focused where her sense of self was not developed until a later age. For example, in studies conducted by Daniel Povinelli and his colleagues at the University of Louisiana at Lafayette, young children were recorded playing a game while an adult put a sticker in their hair. When shown the videotape later on, most children over the age of three reached up to their own hair to remove the sticker, while younger children did not make the connection that there was something there. This demonstrates that the three-year-olds understood that the person in the video was the same as the one in the present moment and could react because their sense of self.

As scientists are learning about all higher cognitive functions, they discover that it resides in a particular location or that matures all at once. Jay Giedd of the National Institute of Mental Health, one of the lead scientists on the neuroimaging studies says that “the executive brain doesn't hit adult levels until the age of 25." In fact, one of the last areas to mature in the brain is the prefrontal cortex where judgements, decisions, plans, and behaviors are determined.

In comparison, Corina's cortex was thickest at the age of 11 where her basic functions, such as sensory processing and movement, in the front and back of the brain were developed at a younger age. Corina could remember some memories, while she couldn’t with others. She only remembered the emotional connection to the memory, not the memory itself.  During surgery, the doctors found that as Corina named the pictures on the cards, the changes in the way lights reflected off the brain caused an increase in blood flow in certain spots. This indicated that there is neurotransmitter conductivity and cognitive activity in that exact spot.

Furthermore, by studying thousands of people, doctors and scientists may be able to learn more of where conductivity is strongest which will tell us how the brain is organized.

Coming soon - Part 2: Brain Research from Memory to Meditation

For more information on conductivity, sense of self, brain development, and how neurofeedback brain training can help provide optimal health and performance, please contact us.

-Written by Lily Schmitt and Tanya L. Hilber, PsyD

References

Shreeve, James. “Beyond the Brain.” Science and Innovation. National Geographic Magazine. Web. https://www.nationalgeographic.com/science/health-and-human-body/human-body/mind-brain/